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Dispersive barotropic equations 
for stratified mesoscalc ocean dynamics 

Roberto Camassa and Darryl D. Holm 
Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA 

Dispersive effects induced by weak hydrostatic imbalance in the presence of topography and stratification are 
incorporated into a new model of barotropic (vertically integrated) mesoscale ocean dynamics. This barotropic model 
is obtained by first expanding the solutions of three dimensional Euler-Boussinesq equations in a regular perturbation 
expansion in terms of the several small dimensionless parameters appropriate to mesoscale ocean dynamics. Vertically 
integrating from a fixed bottom topography to the free surface interface with the atmosphere and balancing orders in 
the expansion at fourth order in the small aspect ratio parameter then yields a system of reduced barotropic equations. 
These reduced barotropic equations are considerably more tractable than the starting equations and have appropriate 
limits to known dispersive wave equations such as the forced Kadomtsev-Petviashvili equation in one limit, and the 
rotating shallow water equations in another. This new model of barotropic ocean dynamics may be of use in developing 
numerical algorithms for global ocean circulation modeling. 

1. Introduction 

The fundamental equations describing ocean dynamics are the incompressible Navier-Stokes equa- 
tions written in a rotating frame, with appropriate boundary conditions imposed at the free surface 
and fixed bottom boundaries. To complete the problem statement, one must add to these equations a 
thermodynamic equation of state for the density's dependence on temperature and salinity, as well as 
dynamical equations governing the advection and diffusion of these two thermodynamic quantities. 

In three-dimensional numerical simulations of global ocean circulation, the code currently accepted 
as the standard in the oceanographic community is the f'mite difference model associated with the 
names of Bryan, Cox, Semtner, and Chervin (see ref. [9] ). This model takes advantage of the smallness 
of the ratio of material to gravity-wave speeds, by distinguishing between the 2D barotropic (or 
vertically integrated) velocity field and the deviation from barotropic, called baroclinic, 3D velocity 
field. Since the fastest gravity wave speed, to a good approximation, only affects the barotropic velocity 
field, the equations determining this velocity field are solved taking, for instance, small time substeps 
in order to assure resolution of the gravity wave time scale, while the baroclinic velocity field, which 
evolves on a much longer time scale, is kept fixed and treated as a forcing. The baroclinic field is 
then computed using the full time step, updated and the process repeated. The effective speed of the 
computation is thus strongly influenced by the barotropic velocity field solver. Hence, a scheme that 
would provide a good approximation for the barotropic velocity field for sufficiently long times would 
be extremely valuable in cutting down the computation time. Our approach to developing such a 
scheme is to attempt to take advantage of all the small parameters in the problem. This paper reports 
preliminary results in this direction. 
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Ocean dynamics is characterized by several dimensionless parameters that arc small in magnitude. In 
particular, if one focuses on a resolution of about 50 km for the smallest resolved horizontal structures, 
then the aspect ratio between the largest vertical scale (the ocean's depth) and smallest interesting 
horizontal length scale is small (of order 0. I, or less). Other small dimensionless parameters are: the 
ratio of a typical fluid particle speed to the gravity wave speed (the ratio mentioned earlier as the 
basis for the finite difference model of Bryan et at.); the ratio between gravity wave amplitude and 
the ocean's depth; and the relative changes of temperature and salinity over the ocean's depth. In 
contrast to other treatments, the Rossby number measuring the ratio of the eddy turnover frequency 
to the Earth's rotation frequency is not taken to be small here, because of the applications envisioned 
for our model to relatively fine horizontal resolution. 

Our analysis of this problem so far takes advantage of the scale separations implied by these small 
dimensionless parameters. To do this, wc expand the ocean's dynamical variables in powers of these 
small parameters and scck a balance of scales in the vertically-integrated equations. In the work 
reported here, we study the nondissipativc case and retain the small vertical acceleration terms in the 
Eulcr-Boussinesq equations that would otherwise bc neglected in the so called "primitive equations" 
hydrostatic approximation (see, e.g., [2,9] ). The balance of scales we have found results in a new 
closure scheme for the vertically-integrated dynamics of the ocean in the nondissipativc case. The first 
advantage of this new closure scheme for the vertically-integrated equations is that it accounts for 
stratification, rotation and bottom topography in a two-dimensional set of equations, rather than the 
three-dimensional Euler-Boussinesq equations. The second advantage is that the boundary conditions 
are incorporated into the closure equations in their derivation, rather than being separately imposed. 
Both of these advantages allow the new closure model to bc numerically simulated much more quickly 
and easily than the three-dimensional Eulcr-Boussinesq equations. Moreover, the new closure scheme 
can extend known equations in the classical Boussincsq dispersive water wave family to account for 
the effects of rotation, vorticity, stratification, and bottom topography. 

In section 2 wc nondimensionalizc the Eulcr-Boussincsq equations by using the scaling appropriate 
to mesoscalc ocean dynamics to identify small dimensionless parameters. We find a particular bal- 
ance among these small parameters that eventually produces nontrivial dynamics from a regular per- 
turbation expansion. The equations resulting from this expansion at fourth order in the small vertical- 
to-horizontal aspect ratio are integrated vertically and found to close as a dynamical system. Thus 
wc obtain a set of closed barotropic equations that arc decoupled from the baroclinic dynamics up to 
sixth order in the small aspect ratio. Finally wc usc the classic Marsigli example ( [4 ], pp. 96-98), to 
provide an appropriate interpretation of the stratification variable summoned by our closure scheme. 
In section 3 we discuss the linearized equations, their dispersion relation and their energy balance. In 
section 4 we discuss the limits of the barotropic model to the forced Kadomtsev-Petviashvili ((f)KP) 
equation and the Korteweg-de Vries ((f)KdV) equation. 

2. Derivation of the model equations 

The dynamics of an inviscid, incompressible fluid in a three dimensional domain is described, in 
the Boussinesq approximation, by the motion equation 

g (Pref ÷ P)~, (2.1) d U _  __1 V o P + 2 ~ U X ~ - p ~ f  
dt Pref 
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Fig. 1, The geometry of the fluid layer. 

the incompressibility condition, 

dp/dt = O, (2.2) 

and the conservation of  mass (continuity), 

V0.  U = O. (2.3) 

In these equations d / d t  = Or + U. Vo is the material derivative, V0 is the three dimensional gradient 

Vo := (0~ ,0 .o~)  := ( v ,  oz), 

and U is the fluid velocity 

V : =  (u ,v ,w)  := (u,w). 

Other notation is: density deviation p; pressure p; vertical unit  vector $; and constant parameters, 
Pref, the reference density; 2~2 the Codolis parameter; and g, the gravitational acceleration. 

Equation (2.2) is consistent with nondiffusive advection equations for temperature and salinity. 
(Since we am dealing with ideal fluids, all diffusivity is being neglected. ) The kinematic boundary 
conditions appropriate for an inviscid fluid are (see fig. 1 ) 

w =  d~/dt a t z = ~ ( x , y , t ) ,  w = - u .  Vh a t z = - h ( x , y ) ,  (2.4) 

and U is tangential on any vertical lateral boundaries (free-slip)• The dynamic boundary condition is 
(neglecting surface tension) 

p = /~  at z = ((x,y, t) .  (2.5) 

We nondimensionalize eqs. (2 .1)-(2.5)  by introducing six units L, H, c, H, (0 and Pref and three 
dimensionless small parameters a, fl, e as follows: 
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H I. 
( x , y , z )  = L(x*,y*,ez*) ,  e := T << 1, t = ct* '  

b/ 
(u , v ,w)  = flc (u*,v*,ew*), f l := --<<1,  £ 

6 .2 ,  ,, Co P = PrefP*, P = Pref P , C=CoC a : =  ~ < <  1. 

c = x/gH, 

(2.6) 

By introducing these units we are preconditioning the solution to lie in a thin domain, and to have 
fluid velocities that are small compared to the gravity wave speed. Furthermore, the typical amplitude 
C0 of the free surface above the equilibrium z = 0 is taken to be small compared to the depth H (that 
is ~ = Co/H << 1 ). In these units the dimensionless rotation frequency becomes R o  -1 : =  2~2L/flc = 
2~ L/bi, the inverse of  the Rossby number (which is taken to be O ( 1 ) for mesoscale ocean dynamics). 

In nondimensional form equations (2.1) and (2.2) become (after dropping • ) 

fl--~ = -~Tp + Ro- l f l2u  x Z', fl• dw 1 Op dt - e ~ - - ~ + l + p  , - ~ = 0 ,  (2.7) 

where the material derivative is now d / d t  := O/Ot + flu • V + flwO/Oz. In addition to (2.7) we 
have the rescaled divergence-free condition with V0 = (Ox, Or, c-loz ), 

Ux + vy + wz = 0 (2.8) 

and the boundary conditions 

dC 
flw = a - ~  at z = C(x,y , t ) ,  w = - u .  V h  at z = - h ( x , y ) .  (2.9) 

The first equation in (2.9) implies a = O (fl). To keep the notation compact, in the following we 
will drop the parameter a in front of  C, thinking of C and its derivatives as order O (a)  quantities. 
The system (2.7) is similar to system (2.1) in ref. [2], except that we ignore sound waves from the 
beginning, by imposing exact incompressibility. The oceanographic "primitive equations" [2,9] are 
obtained in dimensionless form by dropping the vertical acceleration term in (2.7), thereby strictly 
enforcing hydrostatic balance. This vertical acceleration term is retained here for the barotropic closure 
scheme we derive; it introduces additional dispersion arising from hydrostatic imbalance. 

These notes focus on the effects of  dispersion due to hydrostatic imbalance, topography and strati- 
fication on the barotropic (vertically integrated) dynamics. For this, we need the transport equations 
for vertically integrated quantities (see for example Wu [ 10 ] ). Namely, the material derivative of  a 
function f = f (x, y, z, t) satisfies the equation 

- -~  = [ f ] ,  + p V .  [fu], (2.10) 

in which straight brackets denote vertical integration: 

[ f ]  := / f ( x , y , z , t ) d z  =:  (C + h)f--. (2.11) 

-h 

So [ f ]  is the integral o f f  across the whole fluid layer - h  < z < C and 7 i s  the vertical average o f f .  
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In particular, setting f = 1, st, w, and p, gives respectively, 

O d l + f l V . ( r l [ ) = O ,  ~/:= ( +  h, 

fltgt(rlU) + f l 2V"  (rla-'~) = --~lVP + R o - l f l 2 t l u x  ~', 

+ p2EV. (rtw---a) = - ~ ( 0 - ~ +  (1 + p---)), 

Ot(lT"ff) + f l Y "  (rlff~) : O. (2.12) 

These four equations represent conservation of volume, horizontal momentum, vertical momen= 
turn, and mass, respectively. Although exact, these relations cannot be used as equations of motion 
in general, since new unknowns in the form of  higher order moments appear as a consequence of av- 
eraging. Our aim here is to obtain closure for these equations under suitable approximations for the 
dependent variables st, w, p. 

We now introduce regular perturbation expansions with small parameters t~ and 7 whose magnitudes 
relative to t~,/~ and ~ are to be determined, 

it = stO + eJstl + 0 ( ~ 2 ) ,  W = "tO o + ~'U31 + 0 ( ~ 2 ) ,  

P = PO + 7Pl + 72p2 + 0 ( 7 3 ) ,  P = 7Pl + 72,02 + 0 ( 7 3 )  • (2.13) 

We substitute these expansions into the rescaled motion equations (2.7) and seek a particular balance 
in the equations resulting at order O (72 ) that goes beyond geostrophic and quasi-geostrophic balance. 
In the rescaled horizontal motion equation (2.7), we require 7VP1 to be of  the same order as #g0 u o/O t, 
hence 

# = 0 ( 7 ) .  

In this ordering, hydrostatic balance in the vertical motion equation will be broken at order O (72), 
since (72/~ ) (0pc/0 z + P2 ) is of  the same order as p¢ 0 w0/0 t, which implies 

72 = O(~2fl)  and  hence  fl = 0 ( ~ 2 ) .  

At the next order in 7, the term 72VP2 in the rescaled horizontal motion equation balances with 
JPOUl/Ot,  provided 72 = O(dp) ,  which implies 

7 = 0(~) = O(E2). 

These considerations fix the order of the parameters a, p, 7 and J relative to e. Namely O ( a )  = 
O(p)  = 0 ( 7 )  = 0 ( 6 )  = O(e2). (For convenience in what follows we shall suppress coefficients 
of  order O ( 1 ) and simply identify y 2 = pe 2 etc. ) The order of  the parameter Ro-  1 is still free with 
respect to e. Geostrophic balance is recovered in this ordering when Ro = O (p2). Quasi-geostrophy 
is recovered when Ro = O (p) (see [8]). For mesoscale ocean dynamics Ro = O (1); therefore the 
Coriolis force first comes into the mesoscale dynamics at order O(p2), in the Ul equation. 

Having found the scale relations that introduce nonhydrostatic dispersive effects at order O (pc), 
we next use these relations to derive the equations of dispersive barotropic ocean dynamics. In the w 
equation at order O (e-x ) we have hydrostatic equilibrium, i.e., 
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OPo 
O--Z+ 1 = O, (2.14)  

and from the u equation in (2.7) at O( 1 ) we have Vp0 = 0. Hence P0 = - z  + const.. Consider the 
w equation in (2.7) at O(e ) ,  

op, f Oz "t-P1 = 0  =~ Pl = -  p l d z ' + ~ ' ( x , y , t ) ,  (2.15) 

and compare with the u equation at order 0 (e 2), 

Ou0 
VPl ~- Ot"  (2.16) 

Taking cross derivatives in the two expressions above for Pl gives 

02•0 

OtOz - V p l .  
(2.17) 

Since advection of mass implies, at order O (Y), 

Opl _ 0, (2.18) 
Ot 

the right hand side of (2.17) is independent of time. Hence, integration of  (2.17) implies u0 is 
expressible as 

z 

U 0 = t [ V p l  d z '  + U'o(x,y, t) + ~o(x,y,  Z), (2.19) 
J 

and the first term grows linearly in time unless 

Vpl  = O. (2.20) 

That is, any vertical shear at order O(fl)  must be time independent; otherwise, secular terms will 
develop. Thus the term u0 (x, y, z) is the only z-dependence possible for u0 in the present balancing 
scheme. For definiteness, we will set ~0 = 0 for the rest of  this paper and drop the prime for u~ (x, y, t). 
We will examine the effects of  the time independent vertical shear term elsewhere, in [3 ]. Equations 
(2.18) and (2.20) imply Pl = Pl (z),  and we will take for the equilibrium density stratification 

P l  ( Z ) = S Z dl- c o n s t . ,  (2.21) 

where s is a negative constant. This equilibrium density stratification is typical over most of  the 
ocean [7]. Since Opl/Ot = 0 we must regard the dynamics of the fluid as taking place in a nonhomo- 
geneous medium of  fLxed background density Prcf + 7Pl (Z). 

Incompressibility implies 

0w0 
Oz = - V ' u °  ~ Wo f - Z V . U o  + ~ ( x , y , t ) .  (2.22) 

We can evaluate the function ~b from the boundary condition at z = - h ,  
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- u o .  V h  = Wol-h = h V  .Uo + ¢, 

hence (2.22) becomes 

Wo = - V .  (z + h)uo, 

which will be useful later. In the w equation at order O(f162) we have 

OP2 OWo 
0 2  "t-P2 = - -  0"----~ ' 

(2.23) 

(2.24) 

and so from (2.23) 

Z 

P2(Z ,Y ,Z ,  t)  = lZ2CQtV'IIO "~" ZOtV" ( h l l o ) -  /p2dz' + ¢"(x,y,t). (2.25) 

Only partial differentiation with respect to time appears in (2.25), since our ordering scheme requires 
us to neglect in the material time derivative the advective transport term that would otherwise appear 
in (2.24). Next, we eliminate both ~ in (2.15) and ~'  in (2.25) by using the free boundary conditions 
for the pressure 

/~:=PI~--¢ = [po + 7p~ + 72p2 @ 0(73)]1~__¢ 
¢ 

= c°ns t ' -~+7( - /P l (Z )dz+~(x , y , t ) )+72p2(x ,Y ,~ , t )+O(73) .  (2.26) 

Hence the difference between the pressure at any z and the specified surface pressure,/~, is 

Ap := p - /~  = ~ + 7 / p l ( Z ' ) d z '  + 72@2, (2.27) 
Z 

where 

]P2(x,y ,z ' , t )dz '  + 2z20tV. a0 + Z0tV. (hR0) _[_ O(o/). ap2 
[ 

(2.28) 

We remark that P2 ]~ is of the same order as 5, and as the transport terms neglected in (2.24), namely 
O(a) .  For the reader's convenience the scaling and matching considerations so far are summarized 
order by order in fig. 2. 

We still need to evaluate Vp, where 

Vp = V ~ +  [1 + 7Pl(0)]V~ + y2V(Ap2) "4- O(73, O~27). 

Evaluating the average of (2.28) leads to 

V(Ap2) = (z + h ) V p 2 -  (½hVOt(V. (huo))-~h2VOt(V.uo)~ + o(a). k ] 

(2.29) 

(2.30) 
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"Flow Chart" o f  Derivation 

O(e-1) w-eq ~ Po = -z  + 7r(x,y,t) 

0 ( I )  u-eq ~ Vpo = 0 

Z 

O(e) w-eq ~ p,  = f p,  (z)dz 

O(e 2) u-eq ~ Vpl = 0 

O(F~ 2) incompressibility ~ Vo(z+h)uo = - w  0 
and b.c. @ z= -h  

O(e 3) w-eq ~ P2 = P2 (Uo,P2) 

Fig. 2. "Flow-chart ~ of the derivation of eqs. (2.37), order by order in the asymptotic expansion. 

Here the first term comes from taking the horizontal gradient inside the integral in (2.28), neglecting 
surface terms of order O (a) then averaging and exchanging order of integration. The second set of 
terms in (2.30) again neglects surface terms and transport terms of order O (c~). 

For closure in the harotropic equations we need a dynamical equation for the first term in (2.30). 
From equation (2.7) at order O(p2), multiplied by z + h and vertically averaged, we obtain after 
some algebra 

Ot(z + h)Vp2 + O(t~) = - s ( z  + h)Vw0 

by eq. (2.23) = s -  V ( V .  (huo)) - ~ - V ( V .  uo) tl 

=s V ( V .  (huo)) - -~-V(V.no)  + O(a).  (2.31) 

We remark that a choice of the density stratification different from the linear law assumed in (2.21 ) 
would lead to the same structure for the right hand side of (2.31), i.e., the terms h V ( ~ .  (hno)) and 
h2V (V .n0) would still be there, but with different constant coefficients depending on the particular 
form of p, (z). 

Now we are in position to write a closed set of equations for the stratified barotropic fluid. Referring 
to the first and second equations in (2.12) gives 

B _  
Yt + # ( ~ .  v)~-  = - - ~ v p  + Ro-'fl~-× ~'-  "--V. n(nn - n  (2.32) 

P )/ 

Since n = no + Jul  + O(J 2) and n0 has been taken to be independent of z, we have 

n n -  n n = J 2 ( K l n l -  n i l1)  + O(J3), (2.33) 

and hence the last term in (2.32) is negligible. After substituting for ~ from (2.29) and (2.30) we 
find a closed set of dynamical equations for {, ~-and ,4 (since ~- = n0 + O(J) ,  and reinstating the 
order parameter a for {): 
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o(  
~-8-f + p V .  ( ~  + h)g  = O, 

O~ fl~_..f + f12(~-. V)U'+ Ro-lfl2~'× ~--- -)'Vp~-t~(l + yp")V(-`4 + 

O.4 
0-7 = sD, 

OD 

Ot' 

where we define 

`4 := y2(z + h)Vp2, 

(2.34) 

(2.35) 

D := ~p V ( V .  (h~) )  - ~ V ( V .  ~) , (2.36) 

and/5(x, y, t) and ~ denote the specified surface pressure and the surface equilibrium density deviation, 
respectively. We remark that the first equation in (2.34) is exact, while the second and third equations 
have an error term of order O (fie 4, 3'3 etc.). Restoring dimensions now gives our final equations 

o¢ 
0-~ + V .  (~ + h )~  = O, 

O--t + (~" V ) [  + 2~2~ x ~ = - p r e f V p  - g 1 + V (  -- Pref g .4 + 

0,4 
- ~  = ~D, 

OD 

Ot' 

(2.37) 

where now 

.4 -= (z + h )Vp,  (2.38) 

D := V ( V .  (h~)) - - ~ V ( V . ~ )  , (2.39) 

and ¢ := Syprcf/H = d p l / d z  is a negative constant. 
Equations (2.37 ) are dispersive shallow water equations that incorporate effects of weak deviations 

from hydrostatic balance, weak stratification and strong, O ( 1 ), topography. The key approximations in 
deriving equations (2.37) are: weak baroclinic horizontal velocity dependence, imposed after equation 
(2.20); and weak horizontal density gradients. The latter of these approximations is imposed in order 
to eliminate secular velocity growth. The effects of the mean vertical shear still allowed by (2.19 ) will 
be addressed elsewhere [ 3 ]. Equations (2.37) restrict to those of Wu [ 10 ], provided the stratification 
is absent (.4 = 0 and ¢ = 0), and there is no rotation (~  = 0). In Wu's derivation, the initial flow has 
no vorticity. Hence, there exists a velocity potential for U at all times, and the asymptotic expansion 
proceeds in terms of this potential. In this case, the mean vertical shear u0 (x, y, z ) in (2.19 ) is absent. 

We notice that the solutions ~ of  eqs. (2.37) give information about u~ and P2. In fact, at order 
O(Jp) ,  we have 

01/1 
+ (Uo. V)u0 + Ro- I~  x Uo = - V p 2 ,  (2.40) 

Ot 
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[] 
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Fig. 3. Three different initial conditions for Marsigli's experiment. The vertically averaged forces acting on the partition at 
x = 0 are: (a) _~,2 (gh/2/)Ap; (b) _y2 (3gh/8/)Ap; (c) _y2 (gh/8/)Ap. 

where P2 is given by (2.28) in terms of a0 and powers of z, after P2 has been determined from 

O p2 
- sw o. (2.41) 

Ot 

Hence, replacing u0 ( -  ~ + O(J)  ) by [ in (2.40) and (2.41), and neglecting terms of order O(J)  
gives a system of equations recovering ul ( x , y ,  z,  t) and p2 (x,y, z, t). 

In the absence of stratification (¢ = 0) and without the dispersion caused by hydrostatic pressure 
imbalance (D = 0), these equations reduce to the standard, topographically forced, rotating shallow 
water equations. Dropping overbars and surface forcing terms, these are 

Orl Ou 
0-7 + V ' r / u = 0 '  - ~ +  ( u . V ) u + 2 O ~ x u = - g V ~ l + g V h .  (2.42) 

It remains to give an interpretation of the acceleration due to stratification, - (g/pref).d. For this, 
we refer to ancient experiments of Marsigli, as described in [ 4 ]. 

In the seventeenth century, L.M. Marsigli considered convective adjustment due to horizontal den- 
sity gradients as the mechanism for producing the undercurrent flowing through the Bosphorus Strait 
toward the Black Sea from the Mediterranean. To verify this mechanism, Marsigli set up laboratory 
experiments with a partition separating two compartments containing water of different salinities. 
When the partition was removed, water at lower depths would flow from the compartment of higher 
salinity (as in the Mediterranean) toward the compartment of lower salinity (as in the Black Sea), 
thus explaining the mechanism for the undercurrent. Of course, the explanation comes from differ- 
ences in hydrostatic force for the two compartments, which is precisely the effect being modeled in 
eqs. (2.37) by the acceleration vector -(g/pref)A. To see this, we compute the hydrostatic forces act- 
ing on the partition for the set-up shown in fig. 3a. Here we assume for simplicity p = Pref q- y2 P2, 
i.e., no equilibrium stratification (Pl = 0), and restrict density variations to P2 only. Immediately 
after the removal of the partition, the difference in hydrostatic forces along the partition would yield 
an initial acceleration field for the fluid particles. Namely, a (small) force A f  

A f  = _gy2  (p+ _ p_ ) z~  : = -g~ ,2Apz~  
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is directed along the x-axis from the higher-density (72p+) compartment toward the lower-density 
(~,2p_) one. Vertically averaging this force gives initial acceleration of a column of water located at the 
partition, i.e., -½ y2(ghAp/p~f). It is easy to see from the definition (2.3 8) that this vertical average 
is equal to the acceleration vector - (g /pre f )A for this density distribution. Similarly, calculating 
differences in hydrostatic forces for other simple initial density distributions (such as in figs. 3b,c) 
again yields the same value as - ( g / p ~ ) A  for the initial acceleration of the barotropic motion. The 
ensuing dynamics will involve oscillation and circulation generated by the gravity wave force and the 
Coriolis force. This dynamics will be discussed in more detail elsewhere. 

3. Linearized dynamics 

In this section we discuss the linearized equations and their dispersion relation. We also give a brief 
description of the energy balance for the linearized dynamics. 

Linearizing the system (2.37) around u = A = ~ = 0 gives 

Or( = - V  . hu ,  

OtA -" oD, 

g A + O t D ,  
Pref 

(3.1) 

where overbars for i have been dropped for ease of notation. Taking h = const., which implies 

h2 
D =  V(V. u), 

and eliminating ~ and .4, reduces the system (3.1) to a dispersive vector wave equation for u, 

c92u = 2~c9t,, × "~ + g 1 + h V ( V .  u) g ° h 2 v ( ~ 7 ,  u) + - ~ V ( V .  Ot2u). 
f 3prcf 

Substituting the periodic travelling wave form of the solution 

(3.2) 

u(x , y ,  t) -~ exp[ i (kxx  + kyy - tot)] u(kx, ky, to) 

yields the dispersion relation 

to2 = 4~22 + [k] 2 [gh (I + P/Prcf) - goh2/3prcf] (3.3) 
1 + h21kl2/3 

with k = (kx, ky). 
In the absence of stratification and nonhydrostatic dispersion (the last two terms in (3.2)), this 

dispersion relation reduces to to = x/4~22 + ghk  2 (with k : = ]k I), the dispersion relation for Poincare 
waves [ 8 ]. The effect of stratification in the absence of dispersion arising from hydrostatic imbalance 
is to shift the wave phase speed to to/k = v/4O 2 + ghk  2 ( 1 + ~ / p ~ )  - g o h 2 / 3 p ~ / k  (which for the 
ocean is generally a fraction of a percent). The effect of nonhydrostatic dispersion is to regularize the 
frequency at high wave numbers, as shown in fig. 4. As the wave number ranges from zero to infinity, 
the squared frequency ranges from to2mi n = 4~  2 to to2nm = 3g ( 1 + P/Prcf)/h - gO~prof. Next, solving 
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,.?.., 

m 2 

,¢,. J 

k 2 

Fig. 4. The  dispers ion re la t ion curve oJ(k)  for the  l inear ized baro t ropie  equations.  CO2min = 4£2 2 and  

co2m~ -- 3g(1  + P/Pref)/h - g~/Pref. 

(3.3) for k 2 gives k 2 (3/h2)(c0 2 2 2 = - tOmin)/(coma x - to2). That is, level surfaces of o) are circles in 
k-space, so the group velocity d to /dk  is along the wave vector k. 

Multiplying the linearized motion equation in (3.1) by hu and rearranging using the other linearized 
equations leads to the wave-energy balance relation, 

½0t (hlal 2 + g£2 +,4. ,9 ,4 + ½ha(V.u)  ~ + h 2 ( u . V h ) ( V . u )  + h(u. Vh) 2) 

= - V .  {u [gh(-  ~h3OtV • u -  ½h2Otu • Vh]}  + ,4. (tzSD- ghu), (3.4) 

where h- 18h- l is a symmetric operator and S satisfies a,SD- ghu = 0, and for notational convenience 
we have set Prd = 1 and ~ = 0. Thus, the linearized equations preserve the total energy 

H : =  ½ f d x d y [ h l u l 2 + g ( 2 + , 4 . S , 4 + h ( ½ h V . u + u .  Vh )2+~h3(V .u )2 l  (3.5) 

provided the linearized velocity is tangential to the boundaries of the domain. The energy H consists 
of  the sum of the horizontal kinetic energy, the gravity wave energy, the stratification energy and 
the vertical kinetic energy coming from topography and hydrostatic imbalance. Since the conserved 
quadratic form H is definite, it may be used as a norm to assure Liapunov stability for the linearized 
dynamics, since in this conserved norm the linearized motion is always bounded. (See, e.g., Holm et al. 
[6 ] for considerations of stability of fluid equilibria based on conservation laws.) The modifications 
to the energy H for the ease of  the nonlinear flow (2.37) and the associated Hamiltonian structure is 
discussed in [ 3 ]. 

4. Limits to classical equations in the Boussinesq family 

In this section we discuss the limits of  the barotropic model (2.37) to the (forced) Kadomtsev- 
Petviashvili equation and the (forced) Korteweg-de Vries equation. The starting point is eqs. (2.34), 
which we rewrite, setting a = fl = y -- J - e 2, for each of  the components ~,~" o f f  (dropping bars 
from now on) as 

o--7 + b-2 [(1 + c2~)u] + b~ [(1 + ~2~)v] = o, 

( Ou ou) o~ 2 o~ oo, 
O u ~ 2 u -g ;  - ~  O x ' 0"-'t" + + 'O + R o - l e 2 v  = - - ~  --  (1 + e "~)-ff~ - A i  + Ot 
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0Vo_7 d( ov 4. U~--~ + V - R o - t e 2 u  -- 

OA 
= s D ,  Ot 

Off (1 4. e2P) 0(  OD2 
ay b-; - 02 + a -T '  

(4.1) 

with D given for constant h (h = 1, say) by 

f. 2 f a2U 02~3 I f2 ( 02U 02~3~ 
D1 = T k ' ~  4. O X O y / '  D2 "~ ~ ~k~-~"~ 4" Oy 2 j .  

Time dependent topographical variation could also be included in this formalism, but we are neglecting 
it for now. 

First, we eliminate A by taking a time derivative of the equations for u and v above, obtaining 

02U 2 0 ( O n  0U) ~ 02f 2---02( O2D1 
Ot 2 4" e -~ U-~-~ 4" ~) ~ 4" Ro-I¢ 2 - OxOt (1 + e P) o'O'Tffx + sDI Jr Ot--" T- 

02110t 2 4. 62 ff__i( O~3u_ff_~ 4. ~)'ff'~O~3) -- R O - l e 2 ~  "- OyotO2f (14.. 2 - 0 2 ( e  PI.-z-x:._otoy 4" sD2 4- 02D2ot---f-, 

(4.2) 

Next, we introduce the stretched and moving coordinates 

= x 4 . t ( 1  4.t~Fe2), 2 = e y ,  z = e 2 t .  (4.3) 

These coordinates describe the slow evolution and slow transverse modulation of solutions travelling 
in the x direction at nearly the critical speed. The derivatives with repect to the old variables become, 
in terms of the new variables, 

O /9 O = e  ~2 
O---x = 0--~' Oy 0-2' ~ = + (1 + d~Fe 2) . (4.4) 

Notice that in the new ~, 2 coordinate system, stretched in the y direction, the parameter Ro-  1 acquires 
a factor 1/e for the u equation and a factor c for the v-equation in (4.2), respectively. We then expand 
the dependent variables 

( _  ((0) 4 .C2((2)4 . . . .  , U-- U(0)4.~2U(2)4. . . . ,  V = f.V(1)4, f 3V (3) 4. . . . ,  (4.5) 

substitute in (4.2) and equate equal powers of ~. At order O (1) we obtain 

((o)¢ + u(O)~ = 0 (4.6) 

from the (-equation and 

~(o)gg 4. u(°)~g = -ff~g 

from the u-equation. Clearly these two equations are incompatible unless f ~  = 0. That is, any 
nontrivial forcing from surface pressure has to be of higher order in e. We will take it to be f = O (~2). 
If we assume that all the dependent variables vanish for ~ --, ~ ,  eq. (4.6) implies 
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~,(o) = _u(O). (4.7) 

From the v-equation in (4.1) at order O (e) we obtain 

v(l)~ = _~(o)~ + Ro-lu(O). (4.8) 

At order O(e 2) we obtain 

~(2)¢ q_ U(2)¢ .}. ~(0) .{_ jF~ (0)~.k (~ (0~ (0~ ~_[_ V (1)~= 0 (4.9) 

from the ~-equation in (4.1) and 

U (2)~¢ -I- ~ (2)¢¢ q_ 2U (0)¢¢ + (U (0) u (0)¢)¢ + Ro-lv (1)¢ + ~ (0)¢¢ + ~ (0)¢¢ _ ~ SU (o)¢¢ _~ u (0)¢¢¢¢ 

= 

from the u-equation in (4.2). Taking the derivative with respect to ~ of eq. (4.9), subtracting it from 
eq. (4.10) and taking into account (4.7) and (4.8) gives 

[~(0) + ½ (t~F "1- /~- ½S) ~ (0)( -- ½ ~ (0)~ (0)~_ ~ ~ (0)((~ ] _  ½ ~ (0)~_ ½Ro-2~ (0) 
= (4.1o) 

which is the forced Kadomtsev-Petviashvili (fKP) equation for first term in the free surface expansion, 
with additional terms coming from the stratification (in Boussinesq approximation) and rotation 
through the parameters s (~) and Ro -2, respectively. In particular, the rotation term proportional 
to Ro-2~ (0), in the homogeneous part of the KP equation, is in agreement with the one derived by 
Orimshaw [5]. In the absence ofy (or A) dependence (and rotation) this equation further reduces to 
the forced Korteweg-de "Cries (fKdV) equation. 

5. Conclusion 

Our purpose in this paper has been to report preliminai'y results concerning 0ae dispersive effects 
of hydrostatic imbalance and stratification in the barotropic approximation, by developing an asymp- 
totic series for mesoscale ocean dynamics that closes at order O(e 4) for solutions with weak verti- 
cal shear and weak horizontal density gradients. The resulting closure scheme is the set of dispersive 
shallow water equations (2.37). These equations describe the barotropic (vertically integrated) mo- 
tion, in the absence of dissipation and without any coupling to the baroclinic motion. The effect of 
the dispersive terms in (2.37) is to limit the range of frequencies available to thebarotropic motion. 
(The barotropic motion has the highest frequencies present in the problem of mesoscale ocean dy- 
namics.) Equations (2.37) also extend the rotating shallow water description to include hydrostatic 
imbalance and stratification, while they extend the classical Boussinesq family of equations such as 
KP to include stratification, rotation and vorlicity. The relationships among these families of equa- 
tions are sketched in fig. 5. In later work, we will address the effects of higher order (O (e 6 ) ) nonlinear 
transport, baroclinic coupling and dissipation. 
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3D EULER BOUSSINESQ EQS FOR [ 
STRATIFIED ROTATING INCOMPRESSIBLE FLUIDS I 

Expand in small dimensionless parameters 
and integrate in the vertical direction 

2D DISPERSIVE STRATIFIED I 
ROTATING SHALLOW WATER EQS ] 

Neglect stratification and / ~  Expand in stretched, 
impose h y d m s t a ~  ~ o o r d i n a t e s  

ROTATING t K-P EQ WITH 
SHALLOW WATER EQSI  STRATIFICATION AND ROTATION 

Rigid lid, no I No transverse 
horizontal divergence ~ coordinate dependence 

BAROTROPIC EQ [K-dV EQ WITH STRATIFICATIONI 
FOR POTENTIAL VORTICITY 

Fig. 5. Relationships among the various barotropic equations. 
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